Content Objective: I will be able to name (using correction notation) and classify angles by their measures.

TERM	DESCRIPTION	EXAMPLE	HOW TO NAME IT
RAY	An object consisting of one__ in one direction. continues _ and		
ANGLE	An object consisting of two (called sides) with a common__ (called a vertex).		

EXAMPLE 1: \quad Name each of the following:

Sides: \qquad
Vertex: \qquad
Angle: \qquad

CONSTRUCTION: Copy $\angle A B C$ and bisect it.

EXAMPLE 2:
a. How does the diagram in Example 1 differ from the diagram shown below?
\qquad
\qquad
\qquad
b. Name a point in the interior of \angle QPS. \qquad
c. Name a point in the exterior of \angle QPR.

In item d. below, you would read "m $\angle Q P R$ " as "the measure of angle QPR".
d. If the $\mathbf{m} \angle \mathbf{Q P R}=68^{\circ}$ and $\mathbf{m} \angle \mathbf{R P S}=25^{\circ}$, what is the $\mathbf{m} \angle \mathbf{Q P S}$? \qquad 0

ANGLE ADDITION POSTULATE

If R is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=m \angle P Q S$. If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then R is in the interior of $\angle P Q S$.

EXAMPLE 3: If $\mathrm{m} \angle \mathrm{PQS}=77^{\circ}$ and $\mathrm{m} \angle \mathrm{PQR}=32^{\circ}$, then find $\mathrm{m} \angle \mathrm{RQS}$.

EXAMPLE 4:

If $\mathbf{m} \angle A O C=70^{\circ}, \mathbf{m} \angle A O B=(x+10)^{\circ}$, and $\mathbf{m} \angle B O C=x^{\circ}$, find the following values:
$\mathrm{X}=$ \qquad
$\mathrm{m} \angle \mathrm{BOC}=$ \qquad -
$\mathrm{m} \angle \mathrm{AOB}=$ \qquad ${ }^{\circ}$

CLASSIFICATIONS OF ANGLES

TERM	DESCRIPTION	EXAMPLE
	An angle that has a degree measure less than 90°.	
	An angle has a degree measure equal to 90°.	
	An angle has a degree measure greater than 90° and less than 180°.	
	An angle has a degree measure equal to 180°.	

EXAMPLE 5: For each of the following angles:
a. Name it in two different ways
b. Tell whether its measure is $\left\langle 90^{\circ},>90^{\circ},=90^{\circ}\right.$, or $=180^{\circ}$
c. Classify it.

a. ANGLE: \qquad OR \qquad
b. MEASURE: \qquad
c. CLASSIFICATION: \qquad c. CLASSIFICATION: \qquad

a. ANGLE: \qquad OR
b. MEASURE: \qquad
\qquad

a. ANGLE: \qquad OR \qquad a. ANGLE: \qquad OR \qquad
b. MEASURE: \qquad b. MEASURE: \qquad
c. CLASSIFICATION: \qquad c. CLASSIFICATION: \qquad

TERM	DESCRIPTION	EXAMPLE
ANGLE BISECTOR	A ray, line, or line segment that divides an angle into two	

EXAMPLE 6:

If $\overrightarrow{X Z}$ is an angle bisector of $\angle \mathbf{W X Y}$, name the two congruent angles that it forms. Use congruent marks to show which angles in the diagram are congruent.
\qquad

EXAMPLE 7:

$\overrightarrow{F G}$ bisects $\angle E F H$. Given the following expressions, set up and solve equations to determine the value of x.

a. $\mathrm{m} \angle \mathrm{EFG}=(5 \mathrm{x}-10)^{\circ}$
b. $\mathrm{m} \angle \mathrm{GFH}=(3 \mathrm{x}+20)^{\circ}$ $\mathrm{m} \angle \mathrm{GFH}=(3 \mathrm{x}+25)^{\circ}$ $\mathrm{m} \angle \mathrm{EFH}=(4 x+80)^{\circ}$
$x=$ \qquad

$$
x=
$$

\qquad

