Notes: SPECIAL ANGLE PAIRS

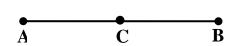
<u>Content Objective:</u> I will be able to identify the relationship between angle pairs such as adjacent, vertical and linear.

TERM	DESCRIPTION	EXAMPLE
PERPENDICULAR LINES	Two lines that intersect to form four Represented symbolically with this notation:	

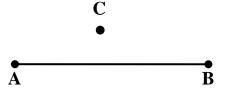
Note: Use a different color for each construction.

CONSTRUCTION:
Construct the perpendicular bisector of AB.

CONSTRUCTION:
Construct a perpendicular line to \overline{AB} through point C.

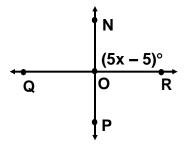


CONSTRUCTION:
Construct a perpendicular
line to $\overline{\mathsf{AB}}$ through point C.



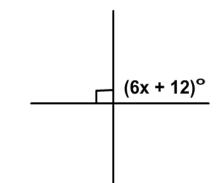
EXAMPLE 1: NP and QR are perpendicular lines intersecting at O. Write an equation in terms of x. Use an algebraic proof to solve for x.

1.	1. given
2.	2. addition
3.	3. division

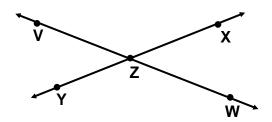


QUICK CHECK: . Write an equation in terms of x. Use an algebraic proof to solve for x.

1. 6x + 12	1.
2.	2.subtraction
3.	3.



For items a. – d., use the diagram on the right to name examples of each of the special angle pair relationships formed by intersecting lines.



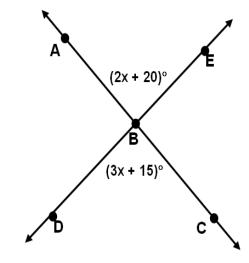
	NAME	DESCRIPTION	EXAMPLES
a.	ADJACENT ANGLES	Angles that have a common and a, but no common interior points.	
b.	NON- ADJACENT ANGLES	Angles that may have a common or common interior points.	
C.	VERTICAL ANGLES	Two non-adjacent angles formed by two lines. Vertical angles are always	
d.	LINEAR PAIR	Two adjacent angles whose non-common sides are The sum of the measures of the angles in a linear pair is	

Vertical angles are congruent, which means that their measures are equal.

The sum of the measures of the angles in a linear pair is 180°.

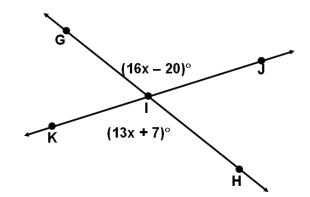
EXAMPLE 2: AC and DE intersect at B. Write an equation in terms of x. Use an algebraic proof to find the value of x. Then find the measure of \angle EBC.

1. 2x + 20 = 3x + 15	1.
2.	2.subtraction
3.	3.subtraction
4.	4.



QUICK CHECK: \overrightarrow{GH} and \overrightarrow{JK} intersect at **I**. Find the value of x and the measure of $\angle JIH$.

1.	1.
2.	2.
3.	3.
4.	4.



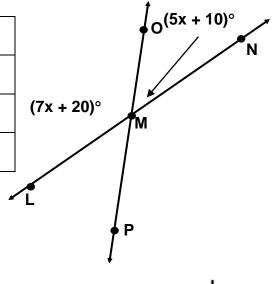
TERM	DESCRIPTION	EXAMPLE
	Two angles that have a sum of 180°.	
	Two angles that have a sum of 90°.	

EXAMPLE 3: LN and \overrightarrow{OP} intersect at M. Find the value of x using an algebraic proof and then find the measures of \angle LMO and \angle OMN.

1.	1.given
2.	2.combine like terms
3.	3.subtraction property
4.	4.division

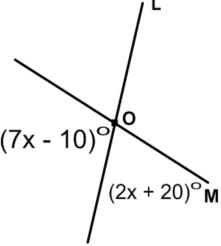
m∠LMO = _____°

m∠OMN = _____°



QUICK CHECK: Line **L** and line **M** intersect at point **O**. Use an algebraic proof to solve for x and then find m<MOL.

1.	1.
2.	2.
3.	3.
4.	4.



m< MOL = _____

EXAMPLE 4: If $\angle 1$ and $\angle 2$ are complements with $\mathbf{m} \angle 1 = (2x + 20)^\circ$ and $\mathbf{m} \angle 2 = (3x + 15)^\circ$, find the value of \mathbf{x} using an algebraic proof.

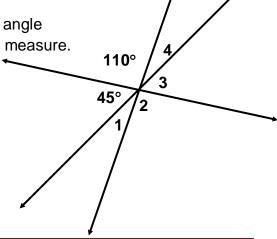
1.	1.
2.	2.
3.	3.
4.	4.

QUICK CHECK: If <1 and <2 are a linear pair with $m<1 = (2x + 5)^0$ and $m<2 = (8x + 5)^0$, find the value of x using an algebraic proof.

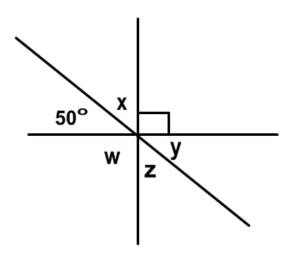
1.	1.
2.	2.
3.	3.
4.	4.

EXAMPLE 5: Find all of the missing angles and describe the angle pair relationship that you used to determine the measure.

$$m \angle 3 = _{---}^{\circ}$$



QUICK CHECK: Find all of the missing angles and describe the angle pair relationship that you used to determine the measure.



EXAMPLE6:
$$\overrightarrow{CD} \perp \overrightarrow{AB}$$
, $m \angle 1 = (6x - 3)^{\circ}$, $m \angle 2 = (7x - 11)^{\circ}$. Find the value of x .

