Content Objective: I will be able to apply angle relationships to proofs and solve problems with angles.

## VERTICAL ANGLE THEOREM: <br> Vertical angles are congruent.



Vertical angles: $\qquad$ $\cong \angle$ $\qquad$ and $\angle \ldots \cong$ $\qquad$ .


## EXAMPLE 1:



Since vertical angles are congruent, set the two angles equal to each other:
$\qquad$ $=$ $\qquad$

Vertical angles: $15\left(\_\right)=7\left(\_\_\right)+88=$ $\qquad$
Supplementary angles: 180 - $\qquad$ $=$ $\qquad$ $\circ$

## QUICK CHECK: Find the value of $x$. Find the vertical angles and supplementary angles.


$X=$ $\qquad$
$\mathrm{m} \angle \mathrm{AXC}=$ $\qquad$
$\mathrm{m} \angle \mathrm{AXB}=$ $\qquad$
$\qquad$
$\mathrm{m} \angle \mathrm{BXD}=$

What is the sum of the angles $A X B$ and $A X C ?$ $\qquad$
$\angle \mathrm{AXB}$ and $\angle \mathrm{AXC}$ form a $\qquad$ pair.

What is the sum of the angles BXD and CXD? $\qquad$
$\angle \mathrm{BXD}$ and $\angle \mathrm{CXD}$ form a $\qquad$ pair.

## CONGRUENT SUPPLEMENTS THEOREM:

If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.

## CONGRUENT COMPLEMENTS THEOREM:

If two angles are congruent to the same angle (or to congruent angles), then they are congruent.

## QUICK CHECK. Fill in the blank rectangles.

## Proof of the Congruent Complements Theorem:



Given: $\angle 1$ and $\angle 2$ are complementary
$\angle 1$ and $\angle 3$ are complementary
Prove: $\angle 2 \cong \angle 3$

| Statements | Reasons |
| :--- | :--- |
| 1) $\angle 1$ and $\angle 2$ are complementary |  |
| $\angle 1$ and $\angle 3$ are complementary |  |$\quad$ 1)

## RIGHT ANGLES CONGRUENCE THEOREM

## All right angles are congruent.

$\angle 1$ and $\angle 2$ are right angles

$\square$

## LINEAR PAIR POSTULATE

If two angles form a linear pair, then the angles are supplementary.


If $\angle 1$ and $\angle 2$ form a linear pair, then $\angle 1$ and $\angle 2$ are supplementary.

QUICK CHECK: Fill in the blanks below. $\overrightarrow{\mathrm{XB}} \perp \overleftrightarrow{\mathrm{GC}}$ and $\overrightarrow{\mathrm{XF}} \perp \overleftrightarrow{\mathrm{AE}}$.


$$
\mathrm{m} \angle \mathrm{GXB}=\mathrm{m} \angle \mathrm{BXC}=\mathrm{m} \angle \mathrm{FXA}=\mathrm{m} \angle \mathrm{FXE}
$$

a) If $\mathrm{m} \angle \mathrm{AXG}=52^{\circ}$ and $\mathrm{m} \angle \mathrm{CXD}=33^{\circ}$, then $\mathrm{m} \angle \mathrm{DXE}=$ $\qquad$ .
b) If $\mathrm{m} \angle \mathrm{AXB}=28^{\circ}$, then $\mathrm{m} \angle \mathrm{AXG}=$ $\qquad$ .
c) If $\mathrm{m} \angle \mathrm{GXF}=33^{\circ}$, then $\mathrm{m} \angle \mathrm{GXE}=$ $\qquad$ .
d) If $\mathrm{m} \angle \mathrm{CXE}=78^{\circ}$, then $\mathrm{m} \angle \mathrm{CXA}=$ $\qquad$ .

