Notes: **PROOF OF ANGLE RELATIONSHIPS**

<u>Content Objective</u>: I will be able to apply angle relationships to proofs and solve problems with angles.

QUICK CHECK: Find the value of x. Find the vertical angles and supplementary angles.

$ \begin{array}{c} B \\ $	$\frac{2x+3)^\circ}{c}$
x =	
m∠AXC =	m∠BXD =
m∠AXB =	m∠CXD =
What is the sum of the angles AXE \angle AXB and \angle AXC form a	
\angle BXD and \angle CXD form a	pair.
<u>CONGRUENT SUPPLEMENTS THEOREM</u> : If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.	
	<u>T COMPLEMENTS THEOREM:</u> same angle (or to congruent angles), then they are congruent.

QUICK CHECK. Fill in the blank rectangles.

<u>Proof</u> of the Congruent Complements Theorem:

Given: $\angle 1$ and $\angle 2$ are complementary

 $\angle 1$ and $\angle 3$ are complementary

Prove: $\angle 2 \cong \angle 3$

<u>RIGHT ANGLES CONGRUENCE THEOREM</u> All right angles are congruent.

If $\angle 1$ and $\angle 2$ form a linear pair, then $\angle 1$ and $\angle 2$ are supplementary.

QUICK CHECK: Fill in the blanks below. $\overrightarrow{XB} \perp \overrightarrow{GC}$ and $\overrightarrow{XF} \perp \overleftarrow{AE}$.

- a) If m \angle AXG = 52° and m \angle CXD = 33°, then m \angle DXE = _____.
- b) If $m \angle AXB = 28^{\circ}$, then $m \angle AXG =$ _____.
- c) If m \angle GXF = 33°, then m \angle GXE = _____.
- d) If m \angle CXE = 78°, then m \angle CXA = _