Notes: **PROOFS OF PARALLEL LINES**

<u>Content Objective</u>: I will apply the relationships between the measures of the angle pairs formed by two parallel lines cut by a transversal to proofs.

EXAMPLE 1: Use the diagram on the right to complete the following theorems/postulates.

THEOREMS/POSTULATES	t
If two parallel lines are cut by a transversal, then alternate interior	Í
angles are	
If two parallel lines are cut by a transversal, then same-side interior	$l \leftarrow \frac{1/8}{2/7}$
angles are	
If two parallel lines are cut by a transversal, then alternate exterior	
angles are	3/6
If two parallel lines are cut by a transversal, then same-side exterior	m ← <u>4</u> 5
angles are	
If two parallel lines are cut by a transversal, then corresponding	
angles are	\checkmark

QUICK CHECK: Use the theorems/postulates from Example 1 to justify the following conclusions.

a.	$\angle 2 + \angle 3 = 180^{\circ}$ because	. •
b.	$\angle 2 \cong \angle 4$ because	•
c.	∠4≅∠8 because	•
d.	∠ 8 + ∠ 5 = 180° because	- •
e.	∠ 1≅ ∠ 7 because	•
f.	∠ 8 + ∠ 7 = 180° because	- •

EXAMPLE 2: Given: r || s m || I

Prove: $m \angle 5 + m \angle 11 = 180^{\circ}$

Fill in any missing statements or reasons to complete the proof.

Statements	Reasons
1.	1. Given
2. \angle 5 & \angle 9 are supplementary.	2.
3.	3. Definition of supplementary angles
4.	4.
5.	5. Corresponding Angles Postulate
6. m∠9 = m∠11	6.
7.	7. Substitution

QUICK CHECK: Given: r || s

m∥ I

Prove:
$$m \angle 3 \cong m \angle 14$$

Fill in any missing statements or reasons to complete the proof.

Statements	Reasons
1.	1. Given
$2. \ \ \angle 3 \cong \angle 6$	2.
3.	3. Given
$4. \ \angle 6 \cong \angle 14$	4.
5.	5. Transitive Property of Equality

We can also prove lines parallel using the *converse* of the following statement:

If two parallel lines are cut by a transversal, then alternate interior angles are ______.

The converse is: If two lines in a plane are cut by a transversal and alternate interior angles

are congruent, then the two lines are _____

IF	THEN
Corresponding angles are congruent .	
Alternate interior angles are congruent .	
Alternate exterior angles are congruent.	The lines are PARALLEL
Consecutive interior angles are supplementary.	
The lines are perpendicular to the same line.	

EXAMPLE 4: Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

∠8 & ∠11	
Postulate/Theorem: _	

b. ∠12 & ∠14

a.

a.

Postulate/Theorem:	

QUICK CHECK:

∠10 & ∠2		

Postulate/Theorem: _____

b. ∠5 & ∠3

Postulate/Theorem: _____

EXAMPLE 5: Fill in any missing statements or reasons to complete the proof.

Given: $c \parallel d; \ \angle 1 \cong \angle 15$

Prove: a ll b

Statements	Reasons
1. c // d	1.
$2. \angle 1 \cong \angle 3$	2. Corresponding Angles are
$3. \angle 1 \cong \angle 15$	3.
4. ∠15≅∠	4. Transitive Property
5. allb	5. Converse of Alternate Exterior Angles

QUICK CHECK:

Given: a *II b*; $\angle 2 \cong \angle 12$

Prove: c ll d

Statements	Reasons
1. allb	1.
$2. \angle 12 \cong \angle 8$	2Angles are congruent
3. $\angle 2 \cong \angle 12$	3.
4. ∠8 ≅ ∠	4. Transitive Property
5. c ll d	5. Converse of Angles