Notes: PROOFS OF PARALLEL LINES

Content Objective: I will apply the relationships between the measures of the angle pairs formed by two parallel lines cut by a transversal to proofs.

EXAMPLE 1: Use the diagram on the right to complete the following theorems/postulates.

THEOREMS/POSTULATES

If two parallel lines are cut by a transversal, then alternate interior angles are \qquad .
 angles are \qquad .

If two parallèl lines are cut by a transversal, then alternate ēéerior angles are \qquad .
 angles are \qquad .

angles are \qquad .

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

QUICK CHECK: Use the theorems/postulates from Example 1 to justify the following conclusions.
a. $\angle 2+\angle 3=180^{\circ}$ because \qquad .
b. $\angle 2 \cong \angle 4$ because \qquad .
c. $\angle 4 \cong \angle 8$ because \qquad .
d. $\angle 8+\angle 5=180^{\circ}$ because \qquad .
e. $\angle 1 \cong \angle 7$ because \qquad .
f. $\angle 8+\angle 7=180^{\circ}$ because \qquad .

EXAMPLE 2: Given: r||s

 m ||Prove: $m \angle 5+m \angle 11=180^{\circ}$

Fill in any missing statements or reasons to complete the proof.

Statements	Reasons
1.	1. Given
$2 . \angle 5 \& \angle 9$ are supplementary.	2.
3.	3. Definition of supplementary angles
4.	4.
5.	5. Corresponding Angles Postulate
$6 . \mathrm{m} \angle 9=\mathrm{m} \angle 11$	6.
7.	7. Substitution

QUICK CHECK: Given: r || s
m || I

Prove: $\mathbf{m} \angle \mathbf{3 \cong \mathbf { m } \angle 1 4}$

Fill in any missing statements or reasons to complete the proof.

Statements	Reasons
1.	1. Given
$2 . \angle 3 \cong \angle 6$	2.
3.	3. Given
$4 . \angle 6 \cong \angle 14$	4.
5.	5. Transitive Property of Equality

We can also prove lines parallel using the converse of the following statement:

If two parallel lines are cut by a transversal, then alternate interior angles are \qquad .

The converse is: If two lines in a plane are cut by a transversal and alternate interior angles are congruent, then the two lines are \qquad .

IF	THEN
Corresponding angles are congruent.	
Alternate interior angles are congruent.	
Alternate exterior angles are congruent.	The lines are PARALLEL
Consecutive interior angles are supplementary.	
The lines are perpendicular to the same line.	

EXAMPLE 4: Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

a. $\quad \angle 8 \& \angle 11$

Postulate/Theorem: \qquad
b. $\quad \angle 12 \& \angle 14$

Postulate/Theorem: \qquad

QUICK CHECK:

a. $\quad \angle 10 \& \angle 2$

Postulate/Theorem: \qquad
b. $\quad \angle 5 \& \angle 3$

Postulate/Theorem: \qquad

EXAMPLE 5: Fill in any missing statements or reasons to complete the proof.
Given: c II $d ; \angle 1 \cong \angle 15$
Prove: a II b

Statements	Reasons
1. $c / I d$	1.
2. $\angle 1 \cong \angle 3$	2. Corresponding Angles are
3. $\angle 1 \cong \angle 15$	3.
4. $\angle 15 \cong \angle \square$	4. Transitive Property
5. a $I I b$	5. Converse of Alternate Exterior Angles

QUICK CHECK:

Given: a II b; $\angle 2 \cong \angle 12$
Prove: c ll d

Statements	Reasons	
1. $a \\| l b$	1.	
2. $\angle 12 \cong \angle 8$	$2 . \overline{\text { congruent }} \quad$	
$3 . \angle 2 \cong \angle 12$	3.	
$4 . \angle 8 \cong \angle __$	4. Transitive Property are	
$5 . \quad c / I d$	5. Converse of Angles	

