Notes：SOLVING RIGHT TRIANGLES

Content Objective：I will be able to use trigonometric ratios to find side lengths and angles of right triangles．

INVERSE TRIGONOMETRIC RATIOS：

Let $\angle \mathbf{A}$ be an acute angle：
－Inverse Sine：If $\sin A=y$ ，then $\sin ^{-1} y=m \angle A$
－Inverse Cosine：If $\cos A=z$ ，then $\cos ^{-1} z=m \angle A$
－Inverse Tangent：If $\tan A=x$ ，then $\tan ^{-1} z=m \angle A$

Use the right triangle above to fill in the missing lengths to complete the inverse trigonometric ratios．

EXAMPLE 1：Set up an equation to solve for the measure of $\angle A$
$\mathrm{m} \angle \mathrm{A}=\sin ^{-1}$ \qquad
＇ーーーーーーー
$\mathrm{m} \angle \mathrm{A}=\tan ^{-1}$

$\mathrm{m} \angle \mathrm{A}=\cos ^{-1}$ \qquad

QUICK CHECK：Set up an equation to solve for the measure of $\angle H$
$\mathrm{m} \angle \mathrm{H}=\sin ^{-1}$ \qquad
$\mathrm{m} \angle \mathrm{H}=\tan ^{-1}$

$\mathrm{m} \angle \mathrm{H}=\cos ^{-1}$ \qquad

EXAMPLE 2: Set up an equation to solve for the measure of $\angle D$ and $\angle F$; round to the nearest degree.

$\mathrm{m} \angle \mathrm{D} \approx$ \qquad ${ }^{\circ}$
$\mathrm{m} \angle \mathrm{F} \approx$ \qquad \circ

I QUICK CHECK: Set up an equation to solve for the measure of $\angle A$, and $\angle B$; round to the | nearest degree.

$\mathrm{m} \angle \mathrm{G}=$ \qquad
GJ \approx \qquad

$L J \approx$ \qquad

QUICK CHECK: Find the missing measurements of the right triangle, round answers to the nearest tenth.
$A C \approx$ \qquad

$B C \approx$ \qquad
$\mathrm{m} \angle \mathrm{A}=$ \qquad

