Notes: INTERIOR ANGLES OF POLYGONS

<u>Content Objective</u>: I will be able to classify polygons based on their number of sides as well as apply formulas for calculating both the measures of the interior angles and their sum.

TERM	DESCRIPTION	EXAMPLE
POLYGON	A closed figure consisting of, called sides, which intersect with other sides at their forming vertices.	
TRIANGLE	Asided,angled closed figure	
QUADRILATERAL	Asided,angled closed figure	
	Asided,angled closed figure	\bigcirc
	Asided,angled closed figure	\bigcirc
	Asided,angled closed figure	\bigcirc
	Asided,angled closed figure	

	A n-sided, n-angled closed figure	36-GON
TERM	DESCRIPTION	EXAMPLE
	A polygon with interior angles that each measure than 180°.	
	A polygon with at least one interior angles that measures than 180°.	

The sum of the measures of the INTERIOR angles of a convex polygon with n sides is:

EXAMPLE 1: Find the sum of the interior angles of a decagon.

Sum = _____°

QUICK CHECK: Find the sum of the interior angles of a 20-gon.

Sum = _____

EXAMPLE 2: Find the missing angle. $X = \underline{\qquad \circ}^{\circ}$ 130° 130° 130° 130° 130° 120°

Geometry Unit 7- Properties of Polygons

For Examples #3 - 4, set up and solves equations to determine the value of x.

EXAMPLE 3:

X =_____°

QUICK CHECK: If the angles of a convex quadrilateral are x° , $2x^{\circ}$, $3x^{\circ}$, and $4x^{\circ}$, what is the value of x?

X =_____

X = _____

EXAMPLE 4:

TERM	DESCRIPTION	EXAMPLE
REGULAR POLYGON	A polygon that is both and	to t
	A polygon that is NOT both equiangular and equilateral.	

The measure of EACH interior angle of a REGULAR polygon with n sides is:

EXAMPLE 5: Find the measure of *each* of the interior angles of a regular dodecagon.

Each angle = _____°

QUICK CHECK: Find the measure of *each* of the interior angles of a regular, convex 20-gon.

Each angle = _____°

EXAMPLE 6: If the measure of *an interior angle* of a regular polygon is 108°, find the number of sides of the polygon.

Number of sides= _____

QUICK CHECK: If the measure of *an interior angle* of a regular polygon is 150°, find the number of sides in the polygon.

Number of sides = ____