Notes: PARALLELOGRAMS

Content Objective: I will be able to apply properties of parallelograms to determine the measures of sides, diagonals, and/or angles.

TERM	DESCRIPTION	EXAMPLE
QUADRILATERAL	A closed figure formed by intersecting at their endpoints.	
PARALLELOGRAM	A quadrilateral in which opposite sides are	
DIAGONAL	Segment joining vertices in a polygon	

EXAMPLE 1: Refer to the figure on the right to identify or name each of the following:
a. The four vertices are \qquad .
b. The name of the parallelogram is \qquad .
c. The opposite sides are \qquad -

d. The opposite angles are \qquad .
e. The consecutive angles are \qquad .
f. The diagonals are \qquad .

Label the figure to represent each of the properties listed below:

PROPERTIES OF PARALLELOGRAMS

1. Opposite sides are \qquad therefore they have the \qquad slope.
2. Opposite sides are \qquad .
3. Opposite angles are \qquad .
4. Consecutive angles are \qquad ..
5. Diagonals \qquad each other.

- - - - - - - - - - - - - - - - - - - - -

For Example \# 2, draw and label each parallelogram described then determine the value of x.
EXAMPLE 2: If $\boldsymbol{A B C D}$ is a parallelogram, $\boldsymbol{m} \angle \boldsymbol{A}=x^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{D}=(2 x-3)^{\circ}$.

$$
x=
$$

\qquad
QUICK CHECK: If $\boldsymbol{A B C D}$ is a parallelogram, $\boldsymbol{m} \angle \boldsymbol{D}=x^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{A}=(3 x+4)^{\circ}$.

$$
x=
$$

\qquad

EXAMPLE 3: Use the parallelogram to find the indicated values.

QUICK CHECK: Use the parallelogram to find the indicated values.

$$
\begin{aligned}
& f= \\
& g=
\end{aligned}
$$

\qquad
y = \qquad

For Example \＃4，draw and label each parallelogram described then determine the value of x ．
EXAMPLE 4：XYZW is a parallelogram with diagonals $\overline{X Z}$ and $\overline{\boldsymbol{Y W}}$ that intersect at point \boldsymbol{A} ． If $X \mathbf{X A}=3 m$ and $\mathbf{Z A}=5 m-4$ ，find \boldsymbol{m} ．
$\mathrm{m}=$ \qquad

QUICK CHECK：XYZW is a parallelogram with diagonals $\overline{X Z}$ and $\overline{\boldsymbol{Y} W}$ that intersect at point \boldsymbol{A} ． If $\boldsymbol{Y A}=2 t$ and $\boldsymbol{W A}=3 t-4$ ，find $\boldsymbol{Y A}$ ．
$t=$ \qquad

EXAMPLE 5：Use parallelogram $A B C D$ to find the indicated values．

$\mathrm{m} \angle \mathrm{AEB}=$ \qquad －
$\mathrm{m} \angle \mathrm{BAD}=$ \qquad ${ }^{\circ}$
\qquad。
$\mathrm{m} \angle \mathrm{DCE}=$ \qquad
$\mathrm{m} \angle \mathrm{AED}=$ \qquad ${ }^{\circ}$
$\mathrm{m} \angle \mathrm{ADC}=$ \qquad。
$\mathrm{m} \angle \mathrm{ECB}=$ \qquad ${ }^{\circ}$
$\mathrm{m} \angle \mathrm{DCB}=$ \qquad。

EXAMPLE 6: For each parallelogram, find the values of $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}.
a.

$X=$ \qquad
$y=$ \qquad

Z = \qquad
b.

$X=$ \qquad
$y=$ \qquad

Z = \qquad

$$
X=
$$

$$
y=
$$

$Z=$ \qquad

QUICK CHECK: Find the values of \mathbf{x} and \mathbf{y} to ensure that each quadrilateral is a parallelogram.
a.

b.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

