Notes: PARALLELOGRAMS

<u>Content Objective:</u> I will be able to apply properties of parallelograms to determine the measures of sides, diagonals, and/or angles.

TERM	DESCRIPTION	EXAMPLE
QUADRILATERAL	A closed figure formed by segments intersecting at their endpoints.	
PARALLELOGRAM	A quadrilateral in which opposite sides are	
DIAGONAL	Segment joining vertices in a polygon	

EXAMPLE 1: Refer to the figure on the right to identify or name each of the following:

a. The four vertices are _____

c. The opposite sides are ______.

- e. The consecutive angles are ______.
- f. The diagonals are _____.

Label the figure to represent each of the properties listed below:

PROPERTIES OF PARALLELOGRAMS

1. Opposite sides are ______ slope.

2. Opposite sides are ______.

3. Opposite angles are ______.

4. Consecutive angles are _____...

5. Diagonals _____ each other.

For Example #2, draw and label each parallelogram described then determine the value of x.

EXAMPLE 2: If **ABCD** is a parallelogram, $\mathbf{m} \angle \mathbf{A} = \mathbf{X}^{\circ}$ and $\mathbf{m} \angle \mathbf{D} = (2\mathbf{X} - 3)^{\circ}$.

QUICK CHECK: If ABCD is a parallelogram, $m\angle D = X^{\circ}$ and $m\angle A = (3x + 4)^{\circ}$.

EXAMPLE 3: Use the parallelogram to find the indicated values.

QUICK CHECK: Use the parallelogram to find the indicated values.

For Example # 4, draw and label each parallelogram described then determine the value of x.

EXAMPLE 4: XYZW is a parallelogram with diagonals \overline{XZ} and \overline{YW} that intersect at point A. If XA = 3m and ZA = 5m - 4, find m.

QUICK CHECK: XYZW is a parallelogram with diagonals \overline{XZ} and \overline{YW} that intersect at point A. If YA = 2t and WA = 3t - 4, find YA.

EXAMPLE 5: Use parallelogram ABCD to find the indicated values.

$$m \angle AEB = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle BAD = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle BAE = ___^{\circ}$$

$$m \angle DCE = ___$$
°

$$m \angle AED = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle ADC = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle ECB = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle DCB = \underline{\hspace{1cm}}^{\circ}$$

EXAMPLE 6: For each parallelogram, find the values of x, y, and z.

a.

X = _____

y = _____

z = _____

b.

X = _____

y = _____

z = _____

c.

x = _____

y = _____

z = ____

QUICK CHECK: Find the values of \mathbf{x} and \mathbf{y} to ensure that each quadrilateral is a parallelogram.

a.

b.

x = _____

y = _____

x = _____

y = _____