Content Objective: I will be able to apply properties of parallelograms and rectangles to determine the measures of sides, diagonals, and/or angles.

TERM	DESCRIPTION	EXAMPLE
QUADRILATERAL	A closed figure formed by \qquad segments $\overline{\text { intersecting }}$ at their endpoints.	
PARALLELOGRAM	A quadrilateral in which opposite sides are \qquad	
RECTANGLE	A parallelogram with four \qquad angles.	
DIAGONAL	Segment joining \qquad vertices in a polygon	

EXAMPLE 1: Refer to the figure on the right to identify or name each of the following:
a. The four vertices are \qquad .
b. The name of the rectangle is \qquad .
c. The opposite sides are \qquad .
d. The opposite angles are \qquad .
e. The consecutive angles are \qquad .
f. The diagonals are \qquad .

EXAMPLE 2:

a. Name the diagonals of rectangle LMNO: \qquad and \qquad
b. Use the distance formula to find the lengths of these diagonals:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

\qquad
\qquad
\qquad .

Label the figure to represent each of the properties listed below:
PROPERTIES OF RECTANGLES

1. Opposite sides are \qquad .
2. Opposite sides \qquad .
3. Opposite angles \qquad .
4. Consecutive angles \qquad .
5. Diagonals \qquad each other.

* 6. Four \qquad angles.
*7. Diagonals are \qquad .

For Examples \# 3-5, set up and solve an equation to determine the value of \boldsymbol{x}.
EXAMPLE 3: Quadrilateral MNOP is a rectangle. $M O=2 x-8$ and $N P=23$.

$x=$ \qquad

QUICK CHECK: Quadrilateral QRST is a rectangle. $\mathbf{Q S}=3 x-2$ and $\mathbf{R T}=48-2 x$.
$x=$ \qquad

- - - - - - - - - - - - - - - - - - - - - - - .

EXAMPLE 4: Quadrilateral $\mathbf{A B C D}$ is a rectangle. $\mathbf{A C}=4 \mathrm{x}-13$ and $\mathbf{D P}=\mathrm{x}+7$.

$x=$ \qquad

QUICK CHECK: Quadrilateral RWST is a rectangle. If $\mathbf{R Z}=2 x+5$ and TW $=5 x-20$.

$X=$ \qquad

EXAMPLE 5: Quadrilateral RSTU is a rectangle. If $\mathbf{m} \angle \mathbf{R S U}=(3 x-5)^{\circ}$ and $\mathbf{m} \angle \mathbf{U S T}=(4 x+4)^{\circ}$.

$X=$ \qquad

QUICK CHECK: Quadrilateral LMNO is a rectangle. If $\angle \mathrm{LMN}=(11 \mathrm{x}+35)^{\circ}$.

$\mathrm{X}=$ \qquad

