Review: SURFACE AREA \& VOLUME OF NETS, PRISMS, PYRAMIDS, CYLINDERS, CONES \& SPHERES

NAME: \qquad DATE: \qquad PERIOD: \qquad
For \# 1 - 17, use the appropriate formula to determine the surface area and / or volume of each figure described. For APPROXIMATE answers, round to the nearest hundredth place value.

1. $S($ Lateral $) \approx$ \qquad Find the APPROXIMATE lateral area and total area of the cylinder:
$\mathrm{S}($ Total Area $) \approx$ \qquad

2. $\mathrm{V}=$ \qquad Given $r=\sqrt{2}$, find the exact volume of the cylinder:

3. $\mathrm{S}($ Lateral $)=$ \qquad Find the EXACT lateral area and total area of the cone:

4. $V=$ \qquad Find the EXACT volume of the cone:

5. $I=$ \qquad A cone has a lateral area of $80 \pi \mathrm{in}^{2}$ and a radius of 8 in . Find its slant height.
6. $r=$ \qquad A cone has a volume of $225 \pi \mathrm{~cm}^{3}$ and a height of 15 cm . Find its radius.
7. \qquad The net BEST represents which solid?

8. $\mathrm{S}($ Total $) \approx$ \qquad Find the APPROXIMATE Total Surface Area.

9. \qquad Find the volume of the sphere:

10. $r=$ \qquad The surface area of a sphere is 576π square units.
11. $V=$ \qquad Find the volume of a cube with a base edge of 4 cm .
12. $\mathrm{S}($ Lateral $)=$

The volume of a cone is 100π cubic units. Its height is 12 units.
$S($ Total $)=$
\qquad

13. $S($ latera) $=$ \qquad The volume of a cylinder is $117 \pi \mathrm{in}^{3}$ and its radius is 3 in .
14. $S($ total $)=$ \qquad The volume of a cone is $1080 \pi \mathrm{ft}^{3}$ and the radius is 9 ft .
15. $\mathrm{S}($ total $)=$ \qquad If the volume of a cone is $12 \pi \mathrm{ft}^{3}$ and the radius is 3 ft .
16. $x=$ \qquad The area of the base of a prism is $4 x$ square inches, and the height of the prism is $2.5 x$ inches. If the prism has a volume of 1,000 cubic inches, what is the value of ' x '?
17. $S($ total $)=$ \qquad A cube has a side of 7 centimeters.
18. $\mathrm{V}=$ \qquad Find the volume of the solid by determining how many unit cubes are contained in the solid.

19. $V=$ \qquad Find the volume of the solid by determining how many unit cubes are contained in the solid.

